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1. Introduction

Hantzsche-Wendt manifolds are examples of flat manifolds, i.e. closed Riemannian manifolds with vanishing sectional 
curvature. They are generalizations of the three-dimensional flat orientable manifold defined in [5] and, following [16], we 
say that:

An orientable n-dimensional flat manifold is Hantzsche-Wendt if and only if its holonomy group is an elementary abelian 2-group of 
rank n − 1.

Every n-dimensional flat manifold X occurs as a quotient space of the action of � on the euclidean space Rn , where � is 
a Bieberbach group, i.e. a torsion-free, co-compact and discrete subgroup of the group Isom(Rn) = O(n) �Rn of isometries 
of Rn . X is an Eilenberg-MacLane space of type K (�, 1). By Bieberbach theorems (see [19]), � is defined by the following 
short exact sequence

0 −→ Zn ι−→ �
π−→ G −→ 1, (1.1)

where ι(Zn) is the maximal abelian normal subgroup of �, G is finite and coincides with the holonomy group of X . 
Moreover, by conjugations in �, G acts in a natural way on Zn , giving it the structure of a G-module.

Taking into account the above definition we will say that a Bieberbach group � ⊂ Isom+(Rn) = SO(n) �Rn , defined by 
(1.1), is a Hantzsche-Wendt group and X = Rn/� is a Hantzsche-Wendt manifold (HW-group and HW-manifold for short) if 
G � Cn−1

2 .
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Among many properties of HW-manifolds which were objects of research one can list the following: they exist only in 
odd dimensions [12], they are rational homology spheres [18] and cohomologically rigid [13]. If � is an HW-group then it is 
an epimorphic image of a certain Fibonacci group [8] and if its dimension is greater than or equal to 5, then its commutator 
and translation subgroups coincide [14]. One of the crucial – for the purposes of this paper – properties of HW-groups is 
the one described in [16]: they are diagonal, i.e. there exists a Z-basis B of the G-module Zn such that

gb = ±b

for every b ∈B and g ∈ G .
Now, let n ≥ 3. The fundamental group π1(SO(n)) of the special orthogonal group SO(n) is of order 2. The spin group 

Spin(n) is its double cover – and the universal cover in fact. Let λn : Spin(n) → SO(n) be the covering map. A spin structure 
on a smooth orientable manifold X is an equivariant lift of its frame bundle via λn . Its existence is equivalent to the 
vanishing of the second Stiefel-Whitney class w2(X) of X , see [3, page 40]. In the case when X is flat, it is closely connected 
to the Sylow 2-subgroup of its holonomy group [2] and can be determined by an algorithm [9]. The three-dimensional HW-
manifold has a spin structure (see [7, Theorem VII.1]). But this is the only case – by [11, Example 4.6] no other HW-manifold 
admits any spin structure.

One can consider the complex analogue of spin structures. We have that

Spinc(n) := (
Spin(n) × S1)

/〈(−1,−1)〉 = Spin(n) ×C2 S1

is the double cover of SO(n) × S1 for which the spinc structure is defined – in analogy to the spin case – with the covering 
map λ̄n : Spinc(n) → SO(n) × S1 given by

λ̄n[x, z] :=
(
λn(x), z2

)
.

The manifold X has a spinc structure if and only if w2(X) is the mod 2 reduction of some integral cohomology class 
z ∈ H2(X, Z), see [3, page 49]. We immediately get that existence of spin structures determines existence of spinc structures 
– in fact the former induces the latter, but not the other way around. For example, by an unpublished work [20] all 
orientable 4-manifolds have some spinc structures, but by [15], 3 of the 27 flat ones don’t have any spin structure.

In this paper we prove that every HW-manifold of dimension greater than or equal to 5 does not admit any spinc

structure. Note that some examples of non-spinc HW-manifolds were given in [4].
The tools that we use have been introduced in [13] and used for example in [10]. They proved their effectiveness in 

cohomology-related properties of diagonal manifolds.
The structure of the paper is as follows. Sections 2 and 3 give a quick glance on a way of the encoding diagonal manifolds 

and their Stiefel-Whitney classes by certain matrices. This has been already presented in more detail in [13] and [10]. In 
Section 4 we give one of two theorems on conditions equivalent to the existence of spinc structures on HW-manifolds. For 
our further analysis we introduce HW-matrices. This description of HW-manifolds was introduced in [13] and is in fact 
one-to-one with the one given in [12]. Technical Section 6 gives us some properties and formulas for matrices that we 
work with. The second theorem on conditions equivalent to the existence of spinc structures on HW-manifolds is given in 
Section 7. After that we give a very specific form to a matrix which describes a (possible) spinc HW-manifold and at last 
we show that this form can never occur. This proves that no HW-manifold can admit a spinc structure.

2. Diagonal Bieberbach groups

In this section we give a combinatorial description of diagonal flat manifolds. This language is essential in the analysis 
of the Stiefel-Whitney classes of such manifolds.

Remark 2.1. For any matrix A by Aij, Ai, j or Ai[ j] we shall denote the element in the i-th row and j-th column of A. By 
Ai we shall understand the i-th row of A.

Remark 2.2. Let k ∈ N . Cyclic groups of order k with multiplicative and additive structure will be denoted by Ck and 
Zk :=Z/k, respectively. Note that in the natural way Zk is ring and possibly – a field.

Suppose � is a Bieberbach group defined by the short exact sequence (1.1). As mentioned in the introduction, conju-
gations in � define a G-module Zn . To be a bit more precise, corresponding representation ρ : G → GLn(Z) is called an 
integral holonomy representation of � and it is given by the formula

ρg(z) = ι−1(γ ι(z)γ −1),

where z ∈ Zn, g ∈ G and γ ∈ � is such that π(γ ) = g . We will call � diagonal or of diagonal type if the image of ρ is a 
subgroup of the group
2
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(

D = {A ∈ GL(n,Z) : Aij = A ji = 0 and Aii = ±1 for 1 ≤ i < j ≤ n} ∼= Cn
2

of diagonal matrices of GL(n, Z). Since � is torsion-free, −I /∈ ρ(G), where I is the identity matrix (see [19, page 133]). It 
follows that G = Ck

2 for some 1 ≤ k ≤ n − 1.
Let S1 =R/Z. As in [13] and [10], we consider the automorphisms gi : S1 → S1, given by

g0([t]) = [t], g1([t]) =
[

t + 1

2

]
, g2([t]) = [−t], g3([t]) =

[
− t + 1

2

]
, (2.1)

for t ∈ R. Let D = {gi | i = 0, 1, 2, 3}. It is easy to see that D ∼= C2 × C2 and g3 = g1 g2. We define an action of Dn on the 
torus T n = S1 × · · · × S1︸ ︷︷ ︸

n

by

(t1, . . . , tn)(z1, . . . , zn) = (t1z1, . . . , tnzn), (2.2)

for (t1, . . . , tn) ∈Dn and (z1, . . . , zn) ∈ T n .
Any minimal set of generators of a group Cd

2 ⊆ Dn defines a (d × n)-matrix with entries in D which in turn defines 
a matrix A with entries in the set V = {0, 1, 2, 3} under the identification i ↔ gi , 0 ≤ i ≤ 3. Note that elements of V are 
written in italic.

Definition 2.3. The structure of an additive group on V is given by

i + j = k ⇔ gi g j = gk,

for i, j, k ∈ V . This way V =Z2 ⊕Z2 is in the natural way a Z2-vector space.

Example 2.4. The three-dimensional HW-group has generators:⎛
⎝

⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ ,

⎡
⎣ 1

2
1
2
0

⎤
⎦

⎞
⎠ ,

⎛
⎝

⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ ,

⎡
⎣ 0

1
2
1
2

⎤
⎦

⎞
⎠ ,

hence the corresponding matrix A ∈ V2×3 is of the form

A =
[

1 3 2
2 1 3

]
.

Remark 2.5. Whenever our calculations involve Z2 = {0, 1} and V , it is done by identifying Z2 with the subgroup {0, 1} < V .

We have the following characterization of the action of Cd
2 on T n and the associated orbit space T n/Cd

2 via the matrix A.

Lemma 2.6 ([13, page 1050]). Let Cd
2 ⊆Dn and define the matrix A ∈ Vd×n as above. Then:

(i) the action of Cd
2 on T n is free if and only if there is 1 in the sum of any distinct collection of rows of A,

ii) Cd
2 is the holonomy group of T n/Cd

2 if and only if there is either 2 or 3 in the sum of any distinct collection of rows of A.

When the action of Cd
2 on T n defined by (2.2) is free, we will say that the associated matrix A is free and we will call it the 

defining matrix of T n/Cd
2. In addition, when Cd

2 is the holonomy group of T n/Cd
2, we will say that A is effective.

Corollary 2.7. Up to affine equivalence, every flat manifold with diagonal fundamental group can be encoded by a defining and effective 
matrix.

Proof. Let � ⊂ Isom(Rn) be an n-dimensional diagonal Bieberbach group defined by the short exact sequence (1.1), where 
G = Cd

2 for some d < n. Up to isomorphism, � may be in such a form, that it is diagonal and the monomorphism ι : Zn → �

is given by the formula

z �→
[

I z
0 1

]
.

Hence if (A, a) ∈ �, then A ∈ D and a ∈ 1
2Z

n . Now, every flat manifold with the fundamental group isomorphic to � is affine 
equivalent to

X =Rn/� = (Rn/Zn)/(�/Zn) = T n/G.

By the above description of elements of �, we get G ⊂ Dn . Let ∈ Vd×n be a matrix defined by G . Since G is a holonomy 
group of a flat manifold X , A is defining and effective. �
3
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3. Stiefel-Whitney classes of diagonal flat manifolds

The goal of this section is to introduce a notation and some basic results on Stiefel-Whitney classes of diagonal flat 
manifolds. For more precise description see [10] and [13].

Let n ∈N and � be an n-dimensional diagonal Bieberbach group, given by the extension (1.1), with non-trivial holonomy 
group G = Cd

2 (d > 0). Let A ∈ Vd×n be a defining matrix of the corresponding flat manifold X =Rn/� = T n/Cd
2.

It is well-known that

H∗(Cd
2;Z2) ∼=Z2[x1, . . . , xd],

where {x1, . . . , xd} is a basis of H1(Cd
2, Z2) = Hom(Cd

2, Z2) (see [1, Theorem 1.2]). Let

π∗ : H∗(Cd
2,Z2) → H∗(�,Z2)

be the induced cohomology ring homomorphism. By [10, Proposition 3.2] the total Stiefel-Whitney class is given by

w(X) = π∗(sw) ∈ H∗(�,Z2),

where

sw =
n∏

j=1

(1 + α j + β j). (3.1)

In the above formula for every 1 ≤ j ≤ n, α j, β j ∈ H1(Cd
2, Z2) are the cocycles defined by

α j =
d∑

k=1

α(Akj)xk, β j =
d∑

k=1

β(Akj)xk,

where the linear homomorphisms α, β ∈ HomZ2 (V, Z2) are uniquely defined by the following rules

α(2) = β(3) = 1 and α(3) = β(2) = 0. (3.2)

Let

π∗
(i) : Hi(Cn−1

2 ,Z2) → Hi(�,Z2)

be the induced group cohomology homomorphism (restriction of π∗ to the i-th gradation), for 0 ≤ i ≤ n. Using again [10, 
Proposition 3.2] and the five-term exact sequence for the extension (1.1) (see [10, Formula (7)]) we get

Lemma 3.1. π∗
(1)

is injective and the kernel of π∗
(2)

is spanned by

θ j = α j ∪ β j = α jβ j

for 1 ≤ j ≤ n.

Remark 3.2. Note that the polynomials sw, α j, β j, θ j , where 1 ≤ j ≤ n, can be defined for any matrix A ∈ Vd×n . To emphasize 
this connection or in the case when it won’t be clear from the context, we will add the superscript A to them and write 
swA for example.

4. Bockstein maps and spinc structures

We will keep the notation of the previous section and restrict our attention to the case of Hantzsche-Wendt manifolds 
of dimension greater than or equal to 5. Hence n ≥ 5 is an odd integer and d = n − 1. Let β� and β̃� be the Bockstein 
homomorphisms of cohomology groups of � associated to the short exact sequences

0 −→ Z2
·2−→ Z4

mod2−→ Z2 −→ 0 (4.1)

and

0 −→ Z
·2−→ Z

mod2−→ Z2 −→ 0 (4.2)

respectively. If ρ : H2(�, Z) → H2(�, Z2) is the homomorphism induced by the mod 2 map, then we have the following 
commutative diagram
4
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H1(�,Z) H1(�,Z2) H2(�,Z)

H2(�,Z2)

β̃�

β�
ρ

with the row forming an exact sequence (see [6, Chapter 3.E]). By [14, Theorem 3.1] H1(�) ∼= Zn−1
2 . By [19, Theorem 9.2]

H2(�) is a finite group. Moreover from the universal coefficient theorem ([6, Theorem 3.2]),

H1(�,Z) = 0 and H1(�,Z2) ∼= H2(�,Z) ∼= Zn−1
2 .

Hence β̃� is an isomorphism and Im β� = Imρ .
Let β be the Bockstein homomorphism of cohomology groups of Cn−1

2 associated to the extension (4.1). The homomor-
phism π induces the commutative diagram

H1(Cn−1
2 ,Z2) H2(Cn−1

2 ,Z2)

H1(�,Z2) H2(�,Z2)

β

π∗
(1)

π∗
(2)

β�

By Lemma 3.1, π∗
(1) is a monomorphism of the elementary abelian 2-groups of rank n − 1, hence it is an isomorphism and

Imρ = Im β� = Imβ�π∗
(1) = Imπ∗

(2)β = Imπ∗β.

Let sw2 be the sum of degree 2 terms of the polynomial sw. Then w2(X) = π∗(sw2) and by the above calculations the 
manifold X =Rn/� admits a spinc structure if and only if π∗(sw2) ∈ Imπ∗β . This condition is obviously equivalent to

(sw2 +kerπ∗) ∩ Im β �= ∅.

In addition, one can easily show that for every x ∈ H1(Cn−1
2 , Z2) and a, b ∈ Cn−1

2 we have

β(x)(a,b) = x(a)x(b) = x2(a,b),

hence β(x) = x2 and π∗(β(x)) = π∗(x)2. Similarly, β�( f ) = f 2 for f ∈ H1(�, Z2).
With usage of Lemma 3.1, we collect results of this section in the following theorem:

Theorem 4.1. Assume that n ≥ 5 is an odd integer and X is an n-dimensional Hantzsche-Wendt manifold. Let A ∈ Vn−1×n be a defining 
matrix of X. Then the following conditions are equivalent:

1. X admits a spinc structure.
2. w2(X) ∈ H∗(�, Z2) is a square.
3. There exists x ∈ H1(Zn−1

2 , Z2) such that x2 + swA
2 ∈ span{θ A

1 , . . . , θ A
n }.

5. HW matrices

Let n ∈N . Every n-dimensional HW-manifold X defines some matrix A ∈ Vn−1×n . For the purpose of investigating spinc

properties of X it will be more convenient to work with a square matrix – an HW-matrix. HW-matrices were defined in 
[13].

Let Z be a finite set. By P(Z) we denote the Boolean algebra of subsets of Z . Just recall that the addition and multipli-
cation in P(Z) are defined by the symmetric difference and intersection respectively:

∀A,B∈P(Z) A + B := (A \ B) ∪ (B \ A) and A · B := A ∩ B.

Empty set and Z are zero and one of this algebra, respectively. Let us note without a proof:

Lemma 5.1. Let Z be a finite set.

1. The map | · |2 : P(Z) →Z2 , given by

U �→ |U | mod 2,

is linear.
2. Every permutation of Z is an algebra automorphism of P(Z).
5
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Remark 5.2. We will use the notation Pd :=P({1, . . . , d}) for d ∈N .

Definition 5.3. Let d, n ∈N and A ∈ Vd×n . For S ∈ Pn and 1 ≤ i ≤ d we have the sum of elements of the i-th row A which 
lie in the columns from the set S:

smrS
i (A) :=

∑
j∈S

Aij

and we denote smr{1,...,n}
i (A) simply by smri(A). In a similar way we define the column sums smcS

j (A) (and smc j(A)) for 
S ∈Pd and 1 ≤ j ≤ n. Moreover, we define a map J A : Pd →Pn as follows

J A(U ) :=
{

j : smcU
j (A) = 1

}
.

Definition 5.4. There exists the unique Z2-linear involution · : V → V which maps 2 to 3. We call this map a conjugation. 
To be explicit, we have

0 = 0,1 = 1,2 = 3 and 3 = 2.

Definition 5.5. Let d, n ∈N and A ∈ Vd×n . We call A:

• self-conjugate if At = A, where At is the transpose of A and A is the element-wise conjugate of A;
• distinguished if

Aij =
{

1 if i = j,
2 or 3 if i �= j,

for 1 ≤ i ≤ d, 1 ≤ j ≤ n.

Remark 5.6. Recall that we speak about a principal submatrix of a given matrix if the sets of row and column indices 
which define it are the same (see [17, Definition 6.2.5] for example). We immediately get, that principal submatrices of 
self-conjugate and distinguished matrices are themselves self-conjugate and distinguished, respectively.

Lemma 5.7. Let A ∈ Vk×n be distinguished, where k ≤ n. Then the possible values for smc j(A), where 1 ≤ j ≤ n are given by the 
following table:

j ≤ k j > k

2 | k 2 or 3 0 or 1
2 � k 0 or 1 2 or 3

Proof. Let a, b ∈N . The sum a · 2 + b · 3 depends only on the parity of a and b in the following way:

b
a

even odd

even 0 2
odd 3 1

In order to prove the lemma we use the above table. For j ≤ k we take a + b = k − 1 and consider possible values for the 
sum 1 + a · 2 + b · 3, while for j > k we take a + b = k and the sum a · 2 + b · 3. �
Definition 5.8 ([13, Definition 2]). Let n ∈N . We will call A ∈ Vn×n a HW-matrix if:

1) A is distinguished;
2) smc j(A) = 0 for every 1 ≤ j ≤ n;
3) J A(U ) �= 0 for every U ∈Pn \{0, 1}.

The set of HW-matrices of degree n, or n-HW-matrices for short, will be denoted by Hn .

By Lemma 5.7 we immediately get:
6
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Corollary 5.9. Every HW-matrix is of odd degree.

Directly from the definition of HW-matrices, we get the following properties of the map J :

Corollary 5.10 ([13, Proposition 3]). Let M be an HW-matrix of degree n. Then:

1) J M(1) = 0;
2) J M(U ) = J M(1 + U ).

Proof. First property is just a reformulation of condition 2) of Definition 5.8. The second property follows from the fact that 
for every 1 ≤ j ≤ n we have

smcU
j (M) + smc1+U

j = smc j(M) = 0. �
Remark 5.11. We can think of Definition 5.8 as coming from the encoding of Hantzsche-Wendt groups presented in [12]. In 
connection to this description we note:

1. Any row of an HW-matrix may be removed and the corresponding torus quotient will remain the same. In other words, 
the removal will make the matrix a defining and effective one for the same HW-manifold.

2. Every HW-manifold defines some HW-matrix (see Corollary 2.7).
3. There is an action of the group Gn := C2 � Sn = Cn

2 � Sn on the set Vn×n . Namely, for every A ∈ Vn×n we have that

(a) ck conjugates the k-th column of A, where ck ∈ Cn
2 has non-trivial element of C2 in the k-th coordinate only;

(b) σ · A := Pσ A P−1
σ , where Pσ ∈ GLn(Z) is the permutation matrix of σ ∈ Sn .

Keeping the above remark in mind, we can reformulate [12, Proposition 1.5] as follows:

Proposition 5.12. The HW-manifolds X and X ′ , with corresponding HW-matrices A, A′ ∈ Vn×n, are affine equivalent if and only if A
and A′ are in the same orbit of the action of the group Gn.

6. Square distinguished matrices

The following section is a bit of a technical nature. Its purpose is to present some properties of square distinguished 
matrices. We start with a negative result:

Lemma 6.1. Let n > 1 be an integer. There does not exist a matrix M ∈ Vn×n such that:

(A1) M is distinguished and self-conjugate;
(A2) the first row of M is of the form M1 = [1, 2, . . . , 2];
(A3) smci M = 1 for 1 ≤ i ≤ n;
(A4) in every principal submatrix of M of odd degree there exists a column with sum of elements equal to 1.

Proof. Assume that such a matrix M exists. We will list some of its properties.

(P1) Action by permutations of the set {2, 3, . . . , n} on M , as in Remark 5.11, does not change its properties (A1)–(A4).
(P2) smri(M) = 1 for every 1 ≤ i ≤ n, since

smri(M) =
n∑

j=1

Mij =
n∑

j=1

M ji =
n∑

j=1

M ji = smci(M) = 1 = 1.

(P3) n is odd, by Lemma 5.7.
(P4) M2,1 = 3 by self-conjugacy of M .
(P5) The second row of M cannot be of the form [3, 1, 2, . . . , 2], otherwise

smr2(M) = 3 + 1 + (n − 2)2 = 2 + 2 = 0,

which contradicts (P2).
7



R. Lutowski, J. Popko and A. Szczepański Journal of Geometry and Physics 171 (2022) 104394
(P6) The second row of M cannot be of the form [3, 1, 3, . . . , 3]. Otherwise

M =
[∗ A
∗ B

]
, where A =

[
2 . . . 2
3 . . . 3

]
∈ V2×n−2

Using (A3), for every i > 2 we get

1 = smci(M) = 2 + 3 + smci−2(B) = 1 + smci−2(B),

hence smci−2(B) = 0 and this, together with (P3), contradicts (A4).
(P7) Using (P1), (P5) and (P6), we can assume that

M2 = [3,1,2, . . . ,2︸ ︷︷ ︸
a

,3, . . . ,3︸ ︷︷ ︸
b

],

where a, b > 0. Moreover, a is even (and b = n − 2 − a is odd), since

1 = smr2(M) = 3 + 1 + a · 2 + b · 3 = 2 + a · 2 + (n − 2 − a) · 3

= (1 + a) · 2 + (1 + a) · 3 = (1 + a)(2 + 3) = (1 + a) · 1 = 1 + a · 1.

(P8) Let M have the following block form1

M =

⎡
⎢⎢⎣

1 2 2 2
3 1 2 3
∗ ∗ ∗ C
∗ ∗ ∗ D

⎤
⎥⎥⎦ ,

where on the diagonal we have matrices of degrees 1, 1, a and b. There exists an element of C equal to 2. Otherwise, 
for every i > a + 2, we have

1 = smci(M) = 2 + 3 + a · 3 + smci−a−2(D) = 1 + smci−a−2(D)

and since D is a principal submatrix of M of odd degree, we get a contradiction with (A4).

By (P8) there exist i and j, such that 3 ≤ i ≤ a + 2 < j ≤ n and the principal submatrix � of M given by indices (2, i, j) is 
of the form

� =
⎡
⎣1 2 3

∗ 1 2
∗ ∗ 1

⎤
⎦ .

By self-conjugacy of � we immediately get

� =
⎡
⎣1 2 3

3 1 2
2 3 1

⎤
⎦ ,

but this contradicts (A4). �
Remark 6.2. To a logical sentence  we assign (in a natural way) an element [] ∈Z2 as follows:

[] = 1 ⇔  is true.

Remark 6.3. Let n ∈N, M ∈ Vn×n and U ∈Pn . By MU we denote the sum of the rows of M from the set U :

MU :=
∑
i∈U

Mi

and MU [ j] – its j-th coordinate, for 1 ≤ j ≤ n. We get

J M(U ) =
{

j : smcU
j (M) = 1

}
= { j : MU [ j] = 1}.

1 Note that in our notation of a block form of a matrix a single element represents a matrix of proper dimension with this element in all its entries.
8
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The following lemma, which describes map J for distinguished matrices, extends [13, Proposition 3]. Recall that we treat 
Z2 as a subgroup of V (see Remark 2.5).

Lemma 6.4. Let n ∈N , M ∈ Vn×n be distinguished and S, U ∈Pn. The following hold:

1. J M(U ) = U if |U | = 1.

2. J M(U ) ⊂ U if |U |2 = 1.

3. J M(U ) · U = 0 if |U |2 = 0.

4. | J M(U )|2 = ∑
i, j∈U Mij if |U |2 = 1.

5. | J M(U )|2 = ∑
i, j∈U Mij + ∑

i∈U smri(M) if |U |2 = 0.

6. | J M(U )S|2 = ∑
j∈U [ j ∈ S]MU [ j] if |U |2 = 1.

7. | J M(U )S|2 = ∑
j∈U [ j ∈ S]MU [ j] + ∑

i∈U smrS
i (M) if |U |2 = 0.

Proof. Property 1. holds just because M is distinguished – in fact, we have

∀1≤i≤n J M({i}) = {i}. (6.1)

Properties 2. and 3. hold by the same rule as in the proof of Lemma 5.7. This rule will be also used in the rest of the proof.
Note that 4. and 5. follow from 6. and 7. respectively, if one takes S = {1, . . . , n} = 1 ∈Pn .
If |U | is odd then MU [ j] ∈ {0, 1} if and only if j ∈ U and [ j ∈ J M(U )] = MU [ j] · [ j ∈ U ] for 1 ≤ j ≤ n, hence

| J M(U )S|2 =
n∑

j=1

[ j ∈ S][ j ∈ J M(U )] =
n∑

j=1

[ j ∈ S][ j ∈ U ]MU [ j] =
∑
j∈U

[ j ∈ S]MU [ j].

If |U | is even on the other hand, we get that MU [ j] ∈ {0, 1} if and only if j /∈ U and [ j ∈ J M(U )] = MU [ j] · [ j /∈ U ]. In a 
similar fashion as above we have

| J M(U )S|2 =
n∑

j=1

[ j ∈ S][ j ∈ J M(U )] =
n∑

j=1

[ j ∈ S][ j /∈ U ]MU [ j]

=
∑
j∈U

[ j ∈ S]MU [ j] +
n∑

j=1

[ j ∈ S]MU [ j]

=
∑
j∈U

[ j ∈ S]MU [ j] +
n∑

j=1

[ j ∈ S]
∑
i∈U

Mij

=
∑
j∈U

[ j ∈ S]MU [ j] +
∑
i∈U

∑
j∈S

Mij =
∑
j∈U

[ j ∈ S]MU [ j] +
∑
i∈U

smrS
i (M). �

7. Spinc structures and HW-matrices

In this section we give a necessary and sufficient condition for the existence of a spinc structure on a manifold defined 
by an HW-matrix.

Let us note an easy lemma.

Lemma 7.1. Let d ∈N . A map κA : Z2[x1, . . . , xd] → Map(Pd, Z2) given by

κA(xi)(U ) = [i ∈ U ],
where 1 ≤ i ≤ d and U ∈Pd, defines an algebra homomorphism. The algebra structure of Map(Pd, Z2) is given by point-wise addition 
and multiplication of functions.

We will use the following properties of the map κA :

Lemma 7.2. Let d, n ∈N and A ∈ Vd×n. Then:

1) κA is a monomorphism in gradation 2;
9
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2) κA(θ A
j )(U ) = [ j ∈ J A(U )].

Proof. Let κ = κA and

x =
∑

1≤i< j≤d

αi j xi x j ∈ kerκ,

where αi j ∈Z2. For any 1 ≤ k < l ≤ d and U = {k, l} we have

0 = κ

⎛
⎝ ∑

1≤i< j≤d

αi j xix j

⎞
⎠ (U ) =

∑
1≤i< j≤d

αi jκ(xi)(U ) · κ(x j)(U ) = αkl,

hence x = 0.
Now take 1 ≤ j ≤ n. We have

θ j = α jβ j =
(

d∑
i=1

α(Aij)xi

)(
d∑

k=1

β(Akj)xk

)

and in the consequence, for any U ∈Pd ,

κ(θ j)(U ) =
(∑

i∈U

α(Aij)

)(∑
k∈U

β(Akj)

)
.

Denote by a, b, c, d the number of 0, 1, 2, 3 in the rows from the set U of j-th column of A, respectively. We get κ(θ j)(U ) =
(b + c)(b + d) mod 2, but

(b + c)(b + d) mod 2 = 1 ⇔ (b + c) mod 2 = (b + d) mod 2 = 1.

Hence κ(θ j)(U ) = 1 if and only if

1 = (b + c) · 2 + (b + d) · 3

= b · (2 + 3) + c · 2 + d · 3

= a · 0 + b · 1 + c · 2 + d · 3 = smcU
j (A),

which by definition means, that j ∈ J A(U ). �
Proposition 7.3. Let n > 1 be an odd integer and let A ∈ Vn−1×n be distinguished. The following conditions are equivalent:

1. There exists x ∈ H1(Cn−1
2 , Z2) such that x2 + swA

2 ∈ span{θ A
1 , . . . , θ A

n }.
2. σ2 ∈ V δ := span{θ A

1 − x2
1, . . . , θ

A
n−1 − x2

n−1, θ
A

n }, where σ2 is the elementary symmetric polynomial of degree 2 in variables 
x1, . . . , xn.

3. There exists S ∈Pn, such that for every U ∈Pn−1 the equality (in Z2) holds

|( J A(U ) + U )S|2 =
(|U |

2

)
. (7.1)

Proof. We will omit the super and subscript A in the proof.
Denote by V the subspace of Z2[x1, . . . , xn−1] of polynomials of degree 2. Let V s and V f be subspaces ov V generated 

by monomials which are and are not squares, respectively. Let p : V → V f be the projection coming from the decomposition 
V = V s ⊕ V f . Note that

p(θ j) = θ j − x2
j and p(θn) = θn

for 1 ≤ j < n, hence condition 1. is equivalent to

p(sw2) ∈ span{p(θ A
1 ), . . . , p(θ A

n )} = V δ. (7.2)

Recall functionals α and β defined by (3.2). Since A is distinguished, we have

α(Akj) + β(Akj) =
{

0 if k = j,
1 if k �= j,
10
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for 1 ≤ k ≤ n − 1 and 1 ≤ j ≤ n. Using formula (3.1) we get

sw =
n∏

j=1

(
1 +

n−1∑
k=1

[k �= j]xk

)

and in the expansion of this polynomial the expression xi x j , where i �= j, occurs exactly (n − 2)2 + (n − 1) times. Since n is 
odd, we get p(sw2) = σ2.

Assume 1 ≤ j ≤ n and let δ j := p(θ j). For U ∈Pn−1 we have that

κ(δ j)(U ) = [ j ∈ J (U ) + U ]. (7.3)

Indeed, if j < n, using Lemma 7.2 we get

κ(δ j)(U ) = κ(θ j + x2
j )(U ) = κ(θ j)(U ) + κ(x2

j )(U )

= κ(θ j)(U ) + κ(x j)(U )2 = κ(θ j)(U ) + κ(x j)(U )

= [ j ∈ J (U )] + [ j ∈ U ] = [ j ∈ J (U ) + U ].
Additionally, δn = θn and n /∈ U , hence

κ(δn)(U ) = [n ∈ J (U )] = [n ∈ J (U )] + [n ∈ U ] = [n ∈ J (U ) + U ].
Suppose that σ2 = ∑

s jδ j ∈ V δ and let S := { j : s j = 1} ∈Pn . For every U ∈Pn−1 we have

κ(σ2)(U ) =
n∑

j=1

s jκ(δ j)(U ).

Since

κ(σ2)(U ) =
∑

1≤k<l<n

[l ∈ U ][k ∈ U ] =
∑

k,l∈U
k<l

1 =
(|U |

2

)

and

n∑
j=1

s jκ(δ j)(U ) =
n∑

j=1

[ j ∈ S][ j ∈ J (U ) + U ]

=
n∑

j=1

[ j ∈ S · ( J (U ) + U )] = |S · ( J (U ) + U )|2,

formula (7.1) follows.
Now assume that (7.1) holds for some S ∈Pn and every U ∈Pn−1. By the above calculations it may me written as

n∑
j=1

[ j ∈ S][ j ∈ J (U ) + U ] = κ(σ2)(U ).

Put s j = [ j ∈ S] and use (7.3). The above equation takes the form

n∑
j=1

s jκ(δ j)(U ) = κ(σ2)(U ).

Recall that U is any element of Pn−1. Using this and the linearity of κ , we get

κ
(∑

s jδ j

)
= κ(σ2).

By Lemma 7.2, σ2 = ∑
s jδ j ∈ V δ . �

Definition 7.4. Let n ∈N, M ∈ Vn×n and S ∈Pn .
11
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1. We call S a spinc set for M if for every U ∈Pn the equation

|( J M(U ) + U )S|2 =
(|U |

2

)
(7.4)

holds.
2. We call S an almost spinc set for M if for every U ∈Pn−1 equation (7.4) holds.

If S is a spinc set for M , we call (M, S) a spinc pair.

Lemma 7.5. Let n ∈N be odd, M ∈Hn and S ∈Pn.

1. If S is an almost spinc set for M, then

|S|2 = n − 1

2
.

2. If S is an almost spinc set for M, then it is a spinc set for M.

Proof. Take U = {1, . . . , n − 1}. By Lemma 6.4 and Corollary 5.10, J (U ) = J (1 + U ) = J ({n}) = {n}. Hence J (U ) + U =
{1, . . . , n} = 1, ( J (U ) + U )S = S and we get

|S|2 = |( J (U ) + U )S|2 =
(|U |

2

)
=

(
n − 1

2

)
= n − 1

2
.

Note again, that all equations above are in Z2. In particular the last one holds, because n is odd.
Assume now that S is an almost spinc set for M . Equation (7.4) holds for every U ∈ Pn−1. It is enough to show that it 

also holds whenever n ∈ U . In that case however V = 1 + U ∈Pn−1, so we have

|( J (V ) + V )S|2 =
(|V |

2

)
.

By Corollary 5.10, J (V ) = J (1 + U ) = J (U ), hence

( J (U ) + U )S = ( J (V ) + V + 1)S = ( J (V ) + V )S + S

and by linearity of | · |2 we have

|( J (U ) + U )S|2 = |( J (V ) + V )S|2 + |S|2 =
(|V |

2

)
+ n − 1

2

=
(

n − |U |
2

)
+ n − 1

2
=

(|U |
2

)
,

where in the last equality we again use the fact, that n is odd. �
Theorem 7.6. Let n ∈N, n ≥ 5, M ∈Hn and let X be the HW-manifold defined by M. The following conditions are equivalent:

1. X admits a spinc structure.
2. There exists a spinc set for M.

Proof. By Lemma 7.5 existence of a spinc and an almost spinc set are equivalent conditions. Let A be a matrix composed 
from the first n − 1 rows of M . Clearly it is distinguished and by Remark 5.11, A is defining and effective matrix for X . In 
order to get the desired equivalence, notice that for every U ∈Pn−1 the equality

J A(U ) = J M(U )

holds, use Theorem 4.1 and Proposition 7.3. �
8. Standard forms of spinc pairs

Recall that in Remark 5.11 we have defined the action of the group Gn = C2 � Sn on the space Vn×n , for every n ∈N . We 
will show that in fact it can act on spinc pairs.

Lemma 8.1. Let n ∈N, M ∈ Vn×n, S ∈Pn be such that (M, S) is a spinc pair. Then for every σ ∈ Sn, (σ M, σ S) is also a spinc pair.
12
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Proof. Let U ∈Pn and σ ∈ Sn . Using an easy observation that Jσ M(U ) = σ J M(σ−1U ) and Lemma 5.1, we get∣∣( Jσ M(U ) + U
)
(σ S)

∣∣
2 = ∣∣(σ J M(σ−1U ) + U

)
(σ S)

∣∣
2 =

=
∣∣∣∣σ

((
J M(σ−1U ) + σ−1U

)
S

)∣∣∣∣
2

= ∣∣( J M(σ−1(U )) + σ−1(U )
)

S
∣∣
2 =

(|σ−1(U )|
2

)
=

(|U |
2

)
. �

Note, with the assumptions of the above lemma, that Gn acts on Pn by permutations, using the canonical epimorphism 
Gn → Sn . Moreover, if g ∈ Gn is an element which acts by conjugations of columns only, then J gM = J M , since 1 = 1. We 
immediately get

Corollary 8.2. Let n ∈N, M ∈ Vn×n, S ∈Pn be such that (M, S) is a spinc pair. Then for every g ∈ Gn, (gM, g S) is also a spinc pair.

Lemma 8.3. Let n ∈N and M ∈ Vn×n be distinguished and such that

| J M(U )|2 = 1

for every two-element set U ∈Pn. Then there exists an integer k, such that 2k ≥ n and in the orbit Gn M there exists a matrix M ′ in the 
following block form

M ′ =
[

A C
Ct B

]
,

where A and B are self-conjugate of degree k and n − k, respectively. Moreover

smr1(M ′) = . . . = smrk(M ′) �= smrk+1(M ′) = . . . = smrn(M ′). (8.1)

Proof. Since the matrix Mt is distinguished, by Lemma 5.7 we get that the set {smri(M) : 1 ≤ i ≤ n} has at most two 
elements. Let l = |{i : smri(M) = smr1(M)}|. If 2l ≥ n take k = l and M ′′ = M . Otherwise, construct M ′′ by conjugation 
of the first column of M – we get smr1(M ′′) = smr1(M) and smri(M ′′) = smri(M) + 1 for i > 1. In both cases, letting 
k = |{i : smri(M ′′) = smr1(M ′′)}|, we have 2k ≥ n.

There exists a permutation σ ∈ Sn , which fixes 1 and such that M ′ = σ M ′′ is of the block form[
A C
D B

]
,

where A, B are of degrees k, n − k respectively and the equation (8.1) holds.
Let U = {i, j} for 1 ≤ i < j ≤ n. By our assumptions and Lemma 6.4 we have

1 = M ′
ii + M ′

i j + M ′
ji + M ′

j j + smri(M ′) + smr j(M ′)

and hence

M ′
i j + M ′

ji = smri(M ′) + smr j(M ′) + 1 (8.2)

Consider two cases:

1. j ≤ k or i > k. This implies i, j ≤ k or i, j > k. Equation (8.2) gives us M ′
i j + M ′

ji = 1 and since M ′ is distinguished, 
M ′

i j = M ′
ji . Hence A and B are self-conjugate.

2. i ≤ k < j and hence smri(M ′) = smr j(M ′) + 1. Equation (8.2) gives us M ′
i j = M ′

ji , hence D = Ct . �
Lemma 8.4. Let n ∈N and M ∈ Vn×n be distinguished in the following block form

M =
[

A C
Ct B

]
,

where A, B are of degrees k, l, respectively. Assume that k > 0 and:

1) A is self-conjugate;
2) M1 = [1, 2, . . . , 2];
3) J M({1, i, j}) �= 0 for 1 ≤ i ≤ k < j ≤ n.
13



R. Lutowski, J. Popko and A. Szczepański Journal of Geometry and Physics 171 (2022) 104394
Then C consists only of elements equal to 2.

Proof. If l = 0, there is nothing to prove. Assume that l > 0, take i ≤ k and j > k. The principal submatrix of M defined by 
indices 1, i, j is of the form:⎡

⎣1 2 2
3 1 x
2 x 1

⎤
⎦

If x = 3 then J M({1, i, j}) = 0, contrary to our assumptions, hence Mij = x = 2. Together with the form of M1, we get the 
desired result. �
Definition 8.5. Let n ∈N, M ∈ Vn×n and S be a spinc set for M . We will say that the spinc pair (M, S) is in standard form if:

1) S = {1, . . . , |S|};
2) M1 = [1, 2, . . . , 2];
3) M is distinguished and in the block form⎡

⎣ A 2 ∗
2 B ∗
∗ ∗ ∗

⎤
⎦

with elements on the diagonal of degrees k, l, r;
4) k ≥ l and k + l = |S|;
5) A, B are self-conjugate;
6) smrS

1(M) = . . . = smrS
k (M) �= smrS

k+1(M) = . . . = smrS
k+l(M) (it is possible that l = 0).

We can deduce some further restrictions on a standard form of a matrix.

Lemma 8.6. Keeping the notation from the above definition, let (M, S) be a spinc pair in the standard form and k + l < m ≤ n. Then, 
in the block form

Mm = [
a a ∗]

,

where a ∈ {2, 3} is such that the equation

ka + la + (k − l − 1)2 = a (8.3)

holds.

Proof. Let i ≤ k + l. Using the fact that (M, S) is a spinc pair in the standard form and Lemma 6.4, for U = {i, m} we get

1 =
(|U |

2

)
= |( J M(U ) + U )S|2 = | J M(U )S|2 + |U S|2
= [i ∈ S](Mii + Mmi) + [m ∈ S](Mim + Mmm)

+ smrS
i (M) + smrS

m(M) + [i ∈ S] + [m ∈ S]
= Mmi + smrS

i (M) + smrS
m(M)

and hence

Mmi = smrS
i (M) + smrS

m(M) + 1 =
{

smrS
1(M) + smrS

m(M) + 1 if i ≤ k

smrS
1(M) + smrS

m(M) if i > k
(8.4)

Set a := Mm1. Since M is distinguished, a ∈ {2, 3} and the above equation gives us the desired form of the m-th row of M . 
This implies smrS

m = ka + la. In order to prove equation (8.3) notice, that smrS
1 = 1 + (k + l − 1)2 and use again formula (8.4)

for i = 1. �
By the following lemma, certain spinc pairs can be transformed to standard forms.

Lemma 8.7. Let n ≥ 3 be an odd integer and M ∈ Vn×n be distinguished. Let S be a spinc set for M. If

J M(U ) �= 0 for U ⊂ S and |U | = 3,

then there exists g ∈ Gn such that (gM, g S) is a spinc pair in a standard form.
14
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Proof. By Corollary 8.2 (gM, g S) is a spinc pair for any g ∈ Gn . Our goal is to show that (M, S) can be transformed to a 
pair in the standard form.

By permuting indices and conjugating columns, we can transform (M, S) to a form where S = {1, . . . , |S|} and M1 =
[1, 2, . . . , 2].

Let N be the principal submatrix of M defined on the set S . N is distinguished and for every U ∈P(S) =P |S| we have

| J N (U ) + U |2 = |( J N(U ) + U )S|2 = |( J M(U ) + U )S|2 =
(|U |

2

)
.

In particular, | J N(U )|2 = 1 if |U | = 2. Using Lemma 8.3 we can act on M by an element of G |S| ⊂ Gn such that N becomes

N =
[

A C
Ct B

]
,

where A and B are self-conjugate of degrees k, l respectively, such that k ≥ l and

smr1(N) = . . . = smrk(N) �= smrk+1(N) = . . . = smrk+l(N).

Note that smri(N) = smrS
i (M) for 1 ≤ i ≤ |S| = k + l.

By assumption and Lemma 6.4 we have

J N (U ) = J M(U )S = J M(U ) �= 0

for U ⊂ S and |U | = 3. By Lemma 8.4 we get that C = 2 and hence the spinc pair (M, S) was transformed to a standard 
form. �
9. Spinc structures on HW-manifolds

By the results of previous sections we know that the existence of a spinc structure on an HW-manifold is equivalent to 
the existence of a spinc set for its HW-matrix. We will show that this never happens in dimensions greater than 3.

Lemma 9.1. Let n ≥ 5 be an odd integer and M ∈Hn. There does not exist a spinc set S for M such that |S| = n.

Proof. If such a set S exists, then by our assumptions J M(U ) �= 0 for |U | = 3 and by Lemma 8.7 we can assume that (M, S)

is in a standard form:

M =
[

A 2
2 B

]
,

where the degrees of A, B equal k, l respectively, k ≥ l and:

smri(M) =
{

1 if i ≤ k
0 if i > k

By definition of HW-matrices we have

0 =
n∑

j=1

smc j(M) =
n∑

i=1

smri(M) = k · 1,

hence k is even and in particular k < n.
Let U = {1, . . . , k}. Since it is of even size, J M(U )U = 0 by Lemma 6.4. Moreover, for every j > k we have

MU [ j] =
∑
i∈U

Mij =
∑
i∈U

2 = 0.

Hence J M(U ) = 0. Contradiction with the fact that M ∈Hn . �
Lemma 9.2. Let n ≥ 5 be an odd integer and M ∈Hn. There does not exist a spinc set S for M such that |S| = n − 1.

Proof. Similarly as in the proof of the previous lemma we can assume that

M =
⎡
⎣ A 2 ∗

2 B ∗
∗ ∗ 1

⎤
⎦

15
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where the matrices on the diagonal are of degrees k, l, 1 respectively, k ≥ l and M1 = [1, 2, . . . , 2].
Since k + l = n − 1 is even, k = l mod 2. By Lemma 8.6 we get

Mn = [a,a,1] and k · 1 + 2 = a.

If k is odd, then l is odd and a = 3. By definition of an HW-matrix, we get smci(B) = 1 for some k + 1 ≤ i ≤ k + l and

0 = smck+i(M) = k · 2 + smci(B) + 2 = smci(B) = 1,

a contradiction.
Assume that k is even. Then l is even and a = 2. If l = 0, then Mn = [2, . . . , 2, 1] and J M({1, n}) = 0, which cannot happen. 

Suppose l > 0. Take U = {1, . . . , k}, V = {k + 1, . . . , l}. They are both sets of even size. By the form of M and Lemma 5.7 we 
have

MU [i] ∈ {2,3} and MV [i] = l · 2 = 0 if i ≤ k

and

MU [i] = k · 2 = 0 and MV [i] ∈ {2,3} if k < i < n.

Since M is an HW-matrix, we get MU [n] = MV [n] = 1, but then

0 = smcn(M) = MU [n] + MV [n] + 1 = 1,

a contradiction. �
Lemma 9.3. Let n ≥ 5 be an odd integer and M ∈Hn. There does not exist a spinc set S for M such that |S| = n − 2.

Proof. Similarly as in the previous two cases, we may assume that

M =

⎡
⎢⎢⎣

A 2 ∗ ∗
2 B ∗ ∗
∗ ∗ 1 ∗
∗ ∗ ∗ 1

⎤
⎥⎥⎦ ,

where the blocks on the diagonal are of degrees k, l, 1, 1, respectively and k ≥ l. Since k + l = n − 2 is odd, k = l + 1 mod 2. 
By Lemma 8.6 we have

Mn−1 = [a,a,1,∗] and k · 1 + a = a,

hence k · 1 = 1, k is odd and l is even.
Assume that Mn = [b, b, ∗, 1]. We have a �= b, otherwise

Mn−1 + Mn = [0, . . . ,0, c,d],
where c, d ∈ {2, 3}, hence J M({n − 1, n}) = 0.

For every i ≤ k we get

0 = smci(M) = smci(A) + l · 2 + 2 + 3 = smci(A) + 1,

hence smci(A) = 1. But by Lemma 6.1 matrix A cannot exist, a contradiction. �
Proposition 9.4. Let n ≥ 5 be an odd integer and M ∈Hn. There does not exist a spinc set for M.

Proof. Let S be a spinc set for M . By Lemmas 9.1, 9.2 and 9.3 we can assume that |S| ≤ n − 3. In this case there exists a set 
U ∈ Pn of size 3 such that U S = 0. By Lemma 6.4 J M(U ) ⊂ U , hence ( J M(U ) + U )S = 0. Since S is a spinc set for M , we 
have

0 = |( J M(U ) + U )S|2 =
(|U |

2

)
=

(
3

2

)
= 1,

a contradiction. �
Finally we are ready to state the main result of the paper:

Theorem 9.5. Let X be a Hantzsche-Wendt manifold of dimension n ≥ 5. Then X does not admit a spinc-structure.

Proof. This follows directly from Theorem 7.6 and Proposition 9.4. �
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[19] A. Szczepański, Geometry of Crystallographic Groups, Algebra and Discrete Mathematics, vol. 4, World Scientific Publishing Co. Pte. Ltd., Hackensack, 

NJ, 2012.
[20] P. Teichner, E. Vogt, All 4-manifolds have spinc structures, unpublished note, available from the authors’ webpage https://math .berkeley.edu /~teichner /

Papers /spin .pdf.
17

https://doi.org/10.1016/j.geomphys.2010.01.006
https://doi.org/10.1007/s00605-005-0367-3
https://doi.org/10.1007/s00605-005-0367-3
http://refhub.elsevier.com/S0393-0440(21)00240-0/bibA6581C713BFC7125ECC40ED18C050334s1
http://refhub.elsevier.com/S0393-0440(21)00240-0/bibA6581C713BFC7125ECC40ED18C050334s1
https://doi.org/10.1016/j.geomphys.2013.03.013
https://doi.org/10.1016/j.geomphys.2013.03.013
https://doi.org/10.1007/BF01448045
https://www.math.cornell.edu/~hatcher/AT/AT.pdf
http://refhub.elsevier.com/S0393-0440(21)00240-0/bib2D7C9CA91F9FEA7B9A03B7E78654C4A3s1
https://doi.org/10.1080/00927872.2017.1399412
https://doi.org/10.1080/00927872.2017.1399412
https://doi.org/10.1016/j.jalgebra.2015.03.037
https://doi.org/10.4310/HHA.2019.v21.n2.a18
https://doi.org/10.1090/S0002-9947-06-03873-6
https://doi.org/10.1515/crll.1999.077
https://doi.org/10.1016/j.aim.2016.08.004
https://doi.org/10.1016/j.aim.2016.08.004
https://doi.org/10.1515/JGT.2007.031
https://doi.org/10.1515/ADVGEOM.2010.013
https://doi.org/10.1515/ADVGEOM.2010.013
https://doi.org/10.4171/RMI/445
http://refhub.elsevier.com/S0393-0440(21)00240-0/bibCB1F3E592FA176D3FF119366DE3A3B56s1
https://doi.org/10.1112/S0025579300010561
https://doi.org/10.1112/S0025579300010561
http://refhub.elsevier.com/S0393-0440(21)00240-0/bibF5A283CFE723BF2ED475089A2C556063s1
http://refhub.elsevier.com/S0393-0440(21)00240-0/bibF5A283CFE723BF2ED475089A2C556063s1
https://math.berkeley.edu/~teichner/Papers/spin.pdf
https://math.berkeley.edu/~teichner/Papers/spin.pdf

	Spinc structures on Hantzsche-Wendt manifolds
	1 Introduction
	2 Diagonal Bieberbach groups
	3 Stiefel-Whitney classes of diagonal flat manifolds
	4 Bockstein maps and spinc structures
	5 HW matrices
	6 Square distinguished matrices
	7 Spinc structures and HW-matrices
	8 Standard forms of spinc pairs
	9 Spinc structures on HW-manifolds
	References


